

VA DERS

(Q: What does it say?)

VA DERS

VA DERS

(A: “Space Invaders”)

alm U Uus

(A: “Ambiguous”)

convention

configuration

convention

configuration

(A: “Convention over configuration”)

Welcome!

GRO

A Grok Talk
Brandon Craig Rhodes
November 2007

What's a convention?

Conventions are
traditionally extras.

Conventions begin as
optional practices to
keep code sane

“We always capitalize
the names of classes
In the code we write
for this department.”

“If you have a class Foo,
name Its corresponding
page template foo.pt.”

“We're putting cover sheets
on all the TPS reports
before they go out.”

What if ... ?

What if your web
framework used
conventions rather than
config files?

A simple example:

app-.config

index.pt ‘

A class you've
written

app-.config
<configure
V{eW="§:f[‘d§X"" The configuration
ClasSsS= 1naex -
O file you need to
“index.pt” hook them up!

e
index.pt ‘

A page template <html> <body>

. : <h1>Title</h1>
you've written </body></html>

Conventions are
traditionally ignored by
the computer

But, what if ... ?

What if the framework
assumed, in the absence of
other configuration, that
Index goes with index.pt?

Result:

All explicit
configuration

‘ has disapperaed
index.pt

<html> <body>
<h1>Title</hl>
</body></html>

Advantages Ensue!

Advantages of CoC:

1. Less repetition

Advantages of CoC:

1. Less repetition
2. Conventions get used,
because they matter

Advantages of CoC:

1. Less repetition

2. Conventions get used,
because they matter

3. No loss of flexibility

So, who does CoC?

Actually a very old
Computer Science
concept

Example: FORTRAN
assumed, in the absence
of a declaration, that i
and j were integers, and
that x and y were
floating-point

But when did it take off
for web applications?

Python frameworks:

2005 — Django,
Turbogears

2006 — Pylons,
Grok

Why talk about Grok?

It's only a year old!

Django and TurboGears
are each two years old

Because Grok is built
atop Zope 3

Zope 3 started in 2001,
production release 2004

Grok brings ease
of configuration to an
existing framework

Zope 3 1s more mature

Zope 3 is powerful

Zope 3 provides
a powerful component
framework

But

[t requires configuration

Raw Zope 3
requires you to use
its Zope Configuration
Markup Language
(ZCML)

<configure
xmlns="http://namespaces.zope.org/zope"
118n_domain="zope"
>
<permission
id="zope.Public"
title="[public-permission] Public"
description="Special permission indicating unconditional access.
Public resources are always accessible."
/>
<utility
component=".vocabulary.PermissionsVocabulary"
name="Permissions"
/>
<utility
component=".vocabulary.PermissionldsVocabulary"
name="Permission Ids"
/>
<include file="globalmodules.zcml|" />
<include file="_protections.zcml" />
<utility
provides=".interfaces.lAuthentication"
component=".principalregistry.principalRegistry"
/>

But not Grok!

Grok is friendly

More
specifically

Grok
is a friendly
cave man

Grok wields a club

In
fact

Grok wields

a large
club

Grok uses his club
to smash ZCML

<configure
xmlns="http://namespaces.zope.org/zope"
118n_domain="zope"
>
<permission
id="zope.Public"
title="[public-permission] Public"
description="Special permission ig access.
Public resources are al
/>
<utility
component=".vocabular
name="Permissions"

<utility
component
e="Per

provides=".interfaces.lAuthentication’
component=".principalregistry.principalRegistry"
/>

Grok offers us his club

So that our web apps
can be configured using

convention instead of
XML

Let's create a Grok
instance!

(Brandon, pause the
slides, and show how to
create a Grok instance.

Name it “MyApp”.)

The instance comes with
a web page already
displaying!

What's the formula?

Grok's Threefold Way

Grok's Threefold Way

1. An object at the URL

Grok's Threefold Way

1. An object at the URL
2. A view for that object

Grok's Threefold Way

1. An object at the URL
2. A view for that object
3. A template for the view

Application

Object
i MyApp"

http://.../index

Let's add some
more Python objects,
more Grok Views,
and more templates

(Brandon, go add some
models and further views
to your application)

http://.../

sl <html>...</html>

http://.../contents

LOTR “index”
Application e
Object S e
lllotr" @
contents »
<M ..
| ‘ | ‘
i Character = “index”
il “Aragorn” <htnes
\ | | ‘
Battle

“Pelennor”

<html>...</html>

http://.../Aragorn/

s> <html>...</html>

» “index”

http://.../Pelennor/

<htmcs. ..

sl <html>...</html>

[sn't that fun?

Time for one more topic

What should it be?

There are several
directions we could go

[could show you how
easy 1t 1s to process
form data

We could, in several
seconds, have
an XML-RPC interface

to our models working

We could explore how
/.0pe can generate
forms for you

An illustration could be
made of how our bare
application logic itself

benefits from being in a
component framework

But instead:

We will look at the
contract between a
View and a Template

And explore two forms
that the contract
can take

Let's look back
at our code...

Our View classes
are pretty anemic

While our templates
are out surfing our
raw application objects!

(Brandon, go show them
your anemic View classes
and your object-surfing
templates)

Let's call templates

which surf the raw

application objects
“Muscular templates”

Advantages of muscular
templates:

1. Quick

Advantages of muscular
templates:

1. Quick

2. Fast

Advantages of muscular
templates:

1. Quick

2. Fast

3. Easy

But...

There are also
disadvantages to
muscular templates

Disadvantages of
muscular templates:

1. Difficult to read

Disadvantages of
muscular templates:

1. Difficult to read
2. ... and thus, to audit

Disadvantages of
muscular templates:

1. Difficult to read
2. ... and thus, to audit
3. They know your model

The alternative:

Muscular Views

Let's return to our
application's design

And look at one
of its pages

http://.../

sl <html>...</html>

http://.../contents

LOTR “index”
Application e
Object S e
lllotr" @
contents »
<M ..
| ‘ | ‘
i Character = “index”
il “Aragorn” <htnes
\ | | ‘
Battle

“Pelennor”

<html>...</html>

http://.../Aragorn/

s> <html>...</html>

» “index”

http://.../Pelennor/

<htmcs. ..

sl <html>...</html>

Character
“Aragorn”

>

“Iindex”

http://.../Aragorn/

<htimes. ..

s> <html>...</html>

The object and the view
both have names in a
traditional Zope page

template...

context

Character
= “Aragorn”

>

“Iindex”

http://.../Aragorn/

s> <html>...</html>

<htimes. ..

context view

http://.../Aragorn/

i C..';?::::?f o “iﬁ?:?" - | <html>...</html>
- <h

But instead of using
these default names, we
can provide our own
View namespace

We do so by creating a
namespace() method on
our View

(Brandon, go make your
CharacterIndex View
more muscular)

What are the
advantages of
muscular Views?

(Phrased differently:
“Why on earth would
you ever do that?!”)

(Because, of course,
we've added more code
to our app without
adding any new
functionality!)

Advantages:

1. Your models can now evolve
without breaking your page
templates

Advantages:

2. Page templates cannot
reveal data not delivered
explicitly in namespace()

Advantages:

3. If you write some fake Views
returning static data from
namespace(), your template
writers can start work Day 1

Advantages:

4. Your Views are easy to test
(call namespace() and check
result), templates are too
(try them with static data)

We'll conclude

Grok

Advantages:
Easy, fun

1.
2.
3.
4.
D.

Advantages:

1. Easy, fun
2. Powerful framework

3.
4.
S.

Advantages:
1. Easy, fun
2. Powerful framework
3. Deploys with buildout
4.
5.

Advantages:
1. Easy, fun
2. Powerful framework
3. Deploys with buildout
4. Shares code with Plone
5.

Advantages:
1. Easy, fun
2. Powerful framework
3. Deploys with buildout
4. Shares code with Plone
5. Vibrant community

Of course, there are also
disadvantages

Disadvantages

1. Not yet 1.0

Disadvantages

1. Not yet 1.0
2. Security could be easier

Disadvantages

1. Not yet 1.0
2. Security could be easier
3. Online docs still weak

(buy PYW Zope 3 book!)

Disadvantages

1. Not yet 1.0

2. Security could be easier
3. Online docs still weak
4. Community is 6h off

Thank you!

Any questions?

