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Many programming
languages use static

typing



float half(int n)
{

return n / 2.0;

}



float half(int n)
{

return n / 2.0;

}



Python typing is dynamic



def half(n):
return n / 2.0



You don't worry about
whether an object is of
the right type



You simply try using it



“Duck Typing”

(Alex Martelli)



“Duck Typing”

Walks like a duck?
Quacks like a duck?
[t's a duck!



def half(n):
return n / 2.0



def half(n):
return n / 2.0

(Is n willing to be divided by two?
Then it's number-ish enough for us!)



Now, 1imagine...



Imagine a wonderful
duck-processing library to
which you want to pass
an object



But...

The object you want to
pass isn't a duck?



What if it doesn't
already quack?



What if it bears

not the least resemblance
to a duck!?



Example!



You have a “Message”
object from the Python
“email” module



>>> from email import message_from_file
>>> e = message_from_file(open('msg.txt'))
>>> print e
<email .message.Message instance at ...>
>>> e.is_multipart()
True
>>> for part in e.get_payload():

print part.get_content_type()
text/plain
text/html



multipart/mixed

text/plain

Messages
can be

" text/plain
IECUISIVE text/html |

multipart/alternative

image/jpeg




Imagine that we are
writing a GUI email client



And we want the Message
displayed in a TreeWidget

_E awesome articlel !l (peraephnne@gmail,,n:u:um]l ﬂiﬁl
= multipart/mixed Frﬂr;l: pir%phﬁng@gml?il-cﬂm
text/plain To: brandon@rhodesmill.org

| | Subject: awesome article!!!
= multipart/alternative

text/plain Hey Brandan - | haven't heard from you
:for a while, but did you catch this
magefipey ‘awesome article that they linked to in

"Arts & Letters Daily"? It's about an
English teacher that sets up a "poetry
stand" up in New |ersey somewhere, and
' it's just really inspiring and incredible,
voll've ot to ston whatever vou're dnir'n:]




The Tree widget needs:

method name() - returns name under which
this tree node should be displayed

method children() - returns list of child
nodes 1n the tree

method __len_ () - returns number of child
nodes beneath this one



How can we add these
behaviors to our
Message?



(How can we make an

object which is not a duck
behave like a duck?)



1. Subclassing



Create a “TreeMessage”
class that inherits from
the “Message” class...



class TreeMessage(Message):

def name(self):
return self.get_content_type()

def children(self):
if not self.is_multipart(): return []
return [ TreeMessage(part) for part

in self.get_payload() ]
def len_ (self):

return len(self.children())



What will the test suite
look like?



Remember:

“Untested code
is broken code”

— Philipp von Weitershausen,
Martin Aspeli



Your test suite
must 1nstantiate a
“TreeMessage” and verify
its tree-like behavior...



txt = ""'From: persephone@gmail.com
To: brandon@rhodesmill.org
Subject: what an article!

Did you read Arts & Letters Daily today?
m = message_from_string(txt, TreeMessage)
assert m.name() == 'text/plain’

assert m.children == []

assert m. len () ==



We were lucky!



Our test can cheaply
Instantiate Messages.



txt = ""'From: persephone@gmail.com
To: brandon@rhodesmill.org

Subject: what an article!

Did you read Arts & Letters Daily today?

niamnn
m = message_from_string(txt, TreeMessage)
assert m.name() == 'text/plain’

assert m.children == []

assert m._ len () ==



What if we were
subclassing an LDAP
library?!

We'd need an LDAP server
just to run unit tests!



We were lucky (#2)!



The
“message from string()”
method let us specify an

alternate factory!



txt = ""'From: persephone@gmail.com
To: brandon@rhodesmill.org
Subject: what an article!

Did you read Arts & Letters Daily today?
m = message_from_string(txt, TreeMessage)
assert m.name() == 'text/plain’

assert m.children == []

assert m. len () ==



Final note: we have just
broken the “Message”
class's behavior!



Python library manual
7.1.1 defines “Message”:

_len__():
Return the total number of headers,
including duplicates.



>>> t = ""'From: persephone@gmail.com
To: brandon@rhodesmill.org
Subject: what an article!

Did you read Arts & Letters Daily today?
>>> m = message_from_file(t, Message)

>>> print len(m)

3

>>> m = message_from_file(t, TreeMessage)
>>> print len(m)

0



So how does
subclassing
score?



wINo harm to base class



wINo harm to base class
& Cannot test in isolation



wINo harm to base class
& Cannot test in isolation
& Need control of factory



wINo harm to base class

& Cannot test in isolation
& Need control of factory
& Breaks if names collide



wINo harm to base class

& Cannot test in isolation
& Need control of factory
& Breaks if names collide

Subclassing: D



2. Using a mixin



Create a “TreeMessage”
class that inherits from
both “Message” and a
“Mixin”...



class Mixin(object):

def name(self):
return self.get_content_type()

def children(self):
if not self.is_multipart(): return []
return [ TreeMessage(part) for part

in self.get_payload() ]
def @ len_ (self):

return len(self.children())

class TreeMessage(Message, Mixin): pass



Your test suite can then
inherit from a mocked-up
“message”...



class FakeMessage(Mixin):
def get_content_type(self):
return 'text/plain’
def is_multipart(self): return False
def get_payload(self): return ''

m = FakeMessage()

assert m.name() == 'text/plain’
assert m.children() == []
assert m. len () == 0



How does
a mixin rate?



wINo harm to base class



wINo harm to base class
wCan test mixin by itself




wINo harm to base class
wCan test mixin by itself
& Need control of factory




wINo harm to base class

wCan test mixin by itself
& Need control of factory
& Breaks if names collide




wINo harm to base class

wCan test mixin by itself
& Need control of factory
& Breaks if names collide

Mixin: C




3. Monkey patching



To “monkey patch” a
class, you add or change
its methods dynamically...



def name(self):
return self.get_content_type()
def children(self):
if not self.is_multipart(): return []
return [ Message(part) for part
in self.get_payload() ]
def len_ (self):
return len(self.children())
Message.name = name
Message.children = children

Message.__len = len



Is this desirable?



wDon't need factory



wDon't need factory
& Changes class itself



wDon't need factory
& Changes class itself
@& Broken by collisions



wDon't need factory

& Changes class itself

@& Broken by collisions

@& Patches fight each other



wDon't need factory

& Changes class itself

@& Broken by collisions

@& Patches fight each other
& Ruby people do this



wDon't need factory

& Changes class itself

@& Broken by collisions

@& Patches fight each other
& Ruby people do this
Monkey patching: F



4. Adapter



Design Patterns

Elements of Reusable
Object-Oriented Software
Erich Gamma

Richard Helm

Ralph Johnson
John Vlissides

HLE L (R
Combart el - B - Hheclarzt A riphis rasarssd

Foreword by Grady Booch

-
<«

SIS TINILAAW O TN OSSN AT TS A NOSIO Y

Touted in
the Gang of
Four book

(1994)



[dea: provide “Tree”
functions through an
entirely separate class

Message MessageTreeAdapter

get_content_type() name ()
is_multipart () <i:§%ll children()
get_payload() __len__()




class MessageTreeAdapter(object):
def __init__(self, message):
self .m = message
def name(self):
return self.m.get_content_type()
def children(self):
if not self.m.is_multipart(): return []
return [ TreeMessageAdapter(part)
for part in self.m.get_payload() ]
def len (self):

return len(self.children())



How does wrapping look
in your code?



IMAP library (or whatever)

‘ Message object

tw = TreeWidget (MessageTreeAdapter (msg))

‘ Adapted object

-

¥  multipart/mixed
text/plain

Tre ewj.dget ¥ multipart/alternative

text/plain

e

image/jpeg




Test suite can try adapting
a mock-up object



class FakeMessage(object):
def get_content_type(self):
return 'text/plain’
def is_multipart(self): return True
def get_payload(self): return []

m = MessageTreeAdapter (FakeMessage())
assert m.name() == 'text/plain’
assert m.children == []

assert m. len () ==



How does the Adapter
design pattern stack up?



wINo harm to base class



wINo harm to base class
wCan test with mock-up



wINo harm to base class
wCan test with mock-up
wDon't need factories




wINo harm to base class
wCan test with mock-up
wDon't need factories
wINo collision worries




wINo harm to base class
wCan test with mock-up
wDon't need factories
wINo collision worries
@ Wrapping is annoying




wINo harm to base class

wCan test with mock-up

wDon't need factories

wINo collision worries

@ Wrapping is annoying
Adapter: B




Q: Why call wrapping
“annoying’?



The example makes
it look so easy!



IMAP library (or whatever)

‘ Message object

tw = TreeWidget (TreeMessageAdapter (msg))

‘ Adapted object

-

¥  multipart/mixed
text/plain

Tre ewj.dget ¥ multipart/alternative

text/plain

e

image/jpeg




A: The example looks
easy because it only does
adaptation once!



But in a real application,
it happens all through
your code...



3 party
Producers

IMAP

Genealogy

DB

email

Adapters

A

B

C

Your application

objects

-

msg

A(famtree)

-

B(msg)

I C(msg)

C(msg)

-

objects

3 party

Consumers

Web

Widget

GUI




How can you avoid
repeating yourself, and
scattering information

about adapters and

consumers everywhere?



IMAP library (or whatever)

‘ Message object

tw = TreeWidget (TreeMessageAdapter (msg))

‘ Adapted object

-

¥  multipart/mixed
text/plain

Tre ewj.dget ¥ multipart/alternative

text/plain

e

image/jpeg




tw = TreeWidget (TreeMessageAdapter (msg))




tw = TreeWidget (TreeMessageAdapter (msg))

The key is seeing that this
code conflates two issues!




tw = TreeWidget (TreeMessageAdapter (msg))

Why does this line work?




tw = TreeWidget (TreeMessageAdapter (msg))

[t works because a
TreeWidget needs what
our adapter provides.




tw = TreeWidget (TreeMessageAdapter (msg))

But this line of code keeps
that information hidden
inside of our head!




We need to define what
the TreeWidget needs that
our adapter provides!



-
<«

Design Patterns

Elements of Reusable
Object-Oriented Software

An interface
1S how we
o specify a set
==l of behaviors

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

SIS TINILAAW O TN OSSN AT TS A NOSIO Y




-
*}«#} asss) AN interface
v is how we

(( specify a set
=~ " of behaviors

y

Java






For the moment, forget
Zope-the-web-framework



Instead, look at Zope the
component framework:

zope.interface
Zope.component



With three simple steps,
Zope will rid your code of
manual adaptation



Define an interface
Register our adapter
Request adaptation



from zope.interface import Interface

class ITree(Interface):

def name():
"N Return this tree node's name."" "

def children():
"N Return this node's children."" "

def len ():

""'Return how many children."""



from zope.component import provideAdapter

provideAdapter (MessageTreeAdapter,
adapts=Message,
provides=ITree)



from your_interfaces import ITree
class TreeWidget(...):
def __init__(self, arg):
tree = ITree(arg)



from your_interfaces import ITree
class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

1

i = int(32.1)
1 = 1list('abc')
float (1024)

Hh
Il



And that's it!



And that's it!

Define an interface
Register our adapter
Request adaptation



wINo harm to base class
wCan test with mock-up
wDon't need factories
wINo collision worries
wZope framework is cool
Registered adapter: A




3 party
Producers

IMAP

Genealogy

DB

email

Adapters

A

B

C

Your application

objects

-

msg

A(famtree)

-

B(msg)

I C(msg)

C(msg)

-

objects

3 party

Consumers

Web

Widget

GUI




What
What A B C consumers
adapters need
provide

y

IMAP A(famtree) Web

msg

C(msg)

i
Genealo y i
& » B(msg) » Widget

I GUI
email C(msg)




IMAP

Genealogy

Web

DB

email

Widget

GUI




To conclude:

3 practical tips
3 closing statements



Practical tip #1:
you can provide a default
argument for adaptation



from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)



from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

L]

Q: What if Zope doesn't know how to
adapt the object?



from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

L]

Q: What if Zope doesn't know how to
adapt the object?
A: It throws an exception!



What if that annoys you?

What if some objects
“just work” natively?



Right way out
and an
Easy way out



Right way:
Mark up other classes that
already provide interface

from zope.interface import alsoProvides
alsoProvides(GenealogyTree, ITree)
alsoProvides(FileSystemTree, ITree)



from your_interfaces import ITree
class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

1

i = int(3)
f = float(3.1415)



Fast way:
Provide a default for
when there is no adapter



from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)



from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg, arg)



from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg, arg)

item = mydict.get (32, None)

attr

getattr(obj, 'name', '')



Practical tip #2:
your adapter can
announce what it adapts



class MessageTreeAdapter(object):
def __init__(self, message):

from zope.component import provideAdapter

provideAdapter (MessageTreeAdapter,
adapts=Message,
provides=ITree)



class MessageTreeAdapter(object):
adapts(Message)
implements(ITree)
def __init__(self, message):

from zope.component import provideAdapter
provideAdapter (MessageTreeAdapter)



Practical tip #3:
There are actually three
ways to register



class MessageTreeAdapter(object):
adapts(Message)
implements(ITree)
def __init__(self, message):

from zope.component import provideAdapter
provideAdapter (MessageTreeAdapter)



<configure
xmlns="http://namespaces.zope.org/zope"
i18n_domain=" zope"
>
<adapter factory="MessageTreeAdapter"
for="Message"
provides="1ITree"
/>

</configure>


http://namespaces.zope.org/zope

class MessageTreeAdapter(grok.Adapter):
adapts(Message)
provides(ITree)
def __init__(self, message):



Closing Statement #1:

Grok is cool



Grok lets you define View
adapters that prep your
objects for the Web



BDB
IMAP

SQLAlchemy

Storm
Z0DB

Template

Template

Template

Y

View

Y

View

Y

—)

View

—)

XMLRPC View

XMLRPC

Web
Browser

Client




Grok lets you create space
suits so your objects can
survive the web



Closing Statement #2:

Dynamic adaptation
might feel like a type
declaration, but it's not!



from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

L]

Isn't this an evil old-fashioned
type declaration, like in C7



A: No, it's not!

It specifies a behavior;
not a type; it's dynamic;
it's optional.



Think of adapters as
“two-storey”’ attributes
and methods!



In the old days attributes
were just names:

def gather_info(arg):
title = arg.title
content = arg.content
encoding = arg.encoding



Now we ask for an
adapter.attribute:

def gather_info(arg):
author = IAnnotations(arg) .author
content = ITextContent(arg).content
encoding = IEncoded(arg) .encoding



Closing Statement #3:

This is the future!



Sprint with me!

Grok for the masses!



http://rhodesmill.org/brandon/adapters


http://rhodesmill.org/brandon/adapters

http://rhodesmill.org/brandon/adapters

Thank you!


http://rhodesmill.org/brandon/adapters
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