Using Grok to
Walk Like a Duck

Brandon Craig Rhodes
Georgia Tech

for PyCon 2008
in the Windy City

Many programming
languages use static

typing

float half(int n)
{

return n / 2.0;

}

float half(int n)
{

return n / 2.0;

}

Python typing is dynamic

def half(n):
return n / 2.0

You don't worry about
whether an object is of
the right type

You simply try using it

“Duck Typing”

(Alex Martelli)

“Duck Typing”

Walks like a duck?
Quacks like a duck?
[t's a duck!

def half(n):
return n / 2.0

def half(n):
return n / 2.0

(Is n willing to be divided by two?
Then it's number-ish enough for us!)

Now, 1imagine...

Imagine a wonderful
duck-processing library to
which you want to pass
an object

But...

The object you want to
pass isn't a duck?

What if it doesn't
already quack?

What if it bears

not the least resemblance
to a duck!?

Example!

You have a “Message”
object from the Python
“email” module

>>> from email import message_from_file
>>> e = message_from_file(open('msg.txt'))
>>> print e
<email .message.Message instance at ...>
>>> e.is_multipart()
True
>>> for part in e.get_payload():

print part.get_content_type()
text/plain
text/html

multipart/mixed

text/plain

Messages
can be

" text/plain
IECUISIVE text/html |

multipart/alternative

image/jpeg

Imagine that we are
writing a GUI email client

And we want the Message
displayed in a TreeWidget

_E awesome articlel !l (peraephnne@gmail,,n:u:um]l ﬂiﬁl
= multipart/mixed Frﬂr;l: pir%phﬁng@gml?il-cﬂm
text/plain To: brandon@rhodesmill.org

| | Subject: awesome article!!!
= multipart/alternative

text/plain Hey Brandan - | haven't heard from you
:for a while, but did you catch this
magefipey ‘awesome article that they linked to in

"Arts & Letters Daily"? It's about an
English teacher that sets up a "poetry
stand" up in New |ersey somewhere, and
' it's just really inspiring and incredible,
voll've ot to ston whatever vou're dnir'n:]

The Tree widget needs:

method name() - returns name under which
this tree node should be displayed

method children() - returns list of child
nodes 1n the tree

method __len_ () - returns number of child
nodes beneath this one

How can we add these
behaviors to our
Message?

(How can we make an

object which is not a duck
behave like a duck?)

1. Subclassing

Create a “TreeMessage”
class that inherits from
the “Message” class...

class TreeMessage(Message):

def name(self):
return self.get_content_type()

def children(self):
if not self.is_multipart(): return []
return [TreeMessage(part) for part

in self.get_payload()]
def len_ (self):

return len(self.children())

What will the test suite
look like?

Remember:

“Untested code
is broken code”

— Philipp von Weitershausen,
Martin Aspeli

Your test suite
must 1nstantiate a
“TreeMessage” and verify
its tree-like behavior...

txt = ""'From: persephone@gmail.com
To: brandon@rhodesmill.org
Subject: what an article!

Did you read Arts & Letters Daily today?
m = message_from_string(txt, TreeMessage)
assert m.name() == 'text/plain’

assert m.children == []

assert m. len () ==

We were lucky!

Our test can cheaply
Instantiate Messages.

txt = ""'From: persephone@gmail.com
To: brandon@rhodesmill.org

Subject: what an article!

Did you read Arts & Letters Daily today?

niamnn
m = message_from_string(txt, TreeMessage)
assert m.name() == 'text/plain’

assert m.children == []

assert m._ len () ==

What if we were
subclassing an LDAP
library?!

We'd need an LDAP server
just to run unit tests!

We were lucky (#2)!

The
“message from string()”
method let us specify an

alternate factory!

txt = ""'From: persephone@gmail.com
To: brandon@rhodesmill.org
Subject: what an article!

Did you read Arts & Letters Daily today?
m = message_from_string(txt, TreeMessage)
assert m.name() == 'text/plain’

assert m.children == []

assert m. len () ==

Final note: we have just
broken the “Message”
class's behavior!

Python library manual
7.1.1 defines “Message”:

_len__():
Return the total number of headers,
including duplicates.

>>> t = ""'From: persephone@gmail.com
To: brandon@rhodesmill.org
Subject: what an article!

Did you read Arts & Letters Daily today?
>>> m = message_from_file(t, Message)

>>> print len(m)

3

>>> m = message_from_file(t, TreeMessage)
>>> print len(m)

0

So how does
subclassing
score?

wINo harm to base class

wINo harm to base class
& Cannot test in isolation

wINo harm to base class
& Cannot test in isolation
& Need control of factory

wINo harm to base class

& Cannot test in isolation
& Need control of factory
& Breaks if names collide

wINo harm to base class

& Cannot test in isolation
& Need control of factory
& Breaks if names collide

Subclassing: D

2. Using a mixin

Create a “TreeMessage”
class that inherits from
both “Message” and a
“Mixin”...

class Mixin(object):

def name(self):
return self.get_content_type()

def children(self):
if not self.is_multipart(): return []
return [TreeMessage(part) for part

in self.get_payload()]
def @ len_ (self):

return len(self.children())

class TreeMessage(Message, Mixin): pass

Your test suite can then
inherit from a mocked-up
“message”...

class FakeMessage(Mixin):
def get_content_type(self):
return 'text/plain’
def is_multipart(self): return False
def get_payload(self): return ''

m = FakeMessage()

assert m.name() == 'text/plain’
assert m.children() == []
assert m. len () == 0

How does
a mixin rate?

wINo harm to base class

wINo harm to base class
wCan test mixin by itself

wINo harm to base class
wCan test mixin by itself
& Need control of factory

wINo harm to base class

wCan test mixin by itself
& Need control of factory
& Breaks if names collide

wINo harm to base class

wCan test mixin by itself
& Need control of factory
& Breaks if names collide

Mixin: C

3. Monkey patching

To “monkey patch” a
class, you add or change
its methods dynamically...

def name(self):
return self.get_content_type()
def children(self):
if not self.is_multipart(): return []
return [Message(part) for part
in self.get_payload()]
def len_ (self):
return len(self.children())
Message.name = name
Message.children = children

Message.__len = len

Is this desirable?

wDon't need factory

wDon't need factory
& Changes class itself

wDon't need factory
& Changes class itself
@& Broken by collisions

wDon't need factory

& Changes class itself

@& Broken by collisions

@& Patches fight each other

wDon't need factory

& Changes class itself

@& Broken by collisions

@& Patches fight each other
& Ruby people do this

wDon't need factory

& Changes class itself

@& Broken by collisions

@& Patches fight each other
& Ruby people do this
Monkey patching: F

4. Adapter

Design Patterns

Elements of Reusable
Object-Oriented Software
Erich Gamma

Richard Helm

Ralph Johnson
John Vlissides

HLE L (R
Combart el - B - Hheclarzt A riphis rasarssd

Foreword by Grady Booch

-
<«

SIS TINILAAW O TN OSSN AT TS A NOSIO Y

Touted in
the Gang of
Four book

(1994)

[dea: provide “Tree”
functions through an
entirely separate class

Message MessageTreeAdapter

get_content_type() name ()
is_multipart () <i:§%ll children()
get_payload() __len__()

class MessageTreeAdapter(object):
def __init__(self, message):
self .m = message
def name(self):
return self.m.get_content_type()
def children(self):
if not self.m.is_multipart(): return []
return [TreeMessageAdapter(part)
for part in self.m.get_payload()]
def len (self):

return len(self.children())

How does wrapping look
in your code?

IMAP library (or whatever)

‘ Message object

tw = TreeWidget (MessageTreeAdapter (msg))

‘ Adapted object

-

¥ multipart/mixed
text/plain

Tre ewj.dget ¥ multipart/alternative

text/plain

e

image/jpeg

Test suite can try adapting
a mock-up object

class FakeMessage(object):
def get_content_type(self):
return 'text/plain’
def is_multipart(self): return True
def get_payload(self): return []

m = MessageTreeAdapter (FakeMessage())
assert m.name() == 'text/plain’
assert m.children == []

assert m. len () ==

How does the Adapter
design pattern stack up?

wINo harm to base class

wINo harm to base class
wCan test with mock-up

wINo harm to base class
wCan test with mock-up
wDon't need factories

wINo harm to base class
wCan test with mock-up
wDon't need factories
wINo collision worries

wINo harm to base class
wCan test with mock-up
wDon't need factories
wINo collision worries
@ Wrapping is annoying

wINo harm to base class

wCan test with mock-up

wDon't need factories

wINo collision worries

@ Wrapping is annoying
Adapter: B

Q: Why call wrapping
“annoying’?

The example makes
it look so easy!

IMAP library (or whatever)

‘ Message object

tw = TreeWidget (TreeMessageAdapter (msg))

‘ Adapted object

-

¥ multipart/mixed
text/plain

Tre ewj.dget ¥ multipart/alternative

text/plain

e

image/jpeg

A: The example looks
easy because it only does
adaptation once!

But in a real application,
it happens all through
your code...

3 party
Producers

IMAP

Genealogy

DB

email

Adapters

A

B

C

Your application

objects

-

msg

A(famtree)

-

B(msg)

I C(msg)

C(msg)

-

objects

3 party

Consumers

Web

Widget

GUI

How can you avoid
repeating yourself, and
scattering information

about adapters and

consumers everywhere?

IMAP library (or whatever)

‘ Message object

tw = TreeWidget (TreeMessageAdapter (msg))

‘ Adapted object

-

¥ multipart/mixed
text/plain

Tre ewj.dget ¥ multipart/alternative

text/plain

e

image/jpeg

tw = TreeWidget (TreeMessageAdapter (msg))

tw = TreeWidget (TreeMessageAdapter (msg))

The key is seeing that this
code conflates two issues!

tw = TreeWidget (TreeMessageAdapter (msg))

Why does this line work?

tw = TreeWidget (TreeMessageAdapter (msg))

[t works because a
TreeWidget needs what
our adapter provides.

tw = TreeWidget (TreeMessageAdapter (msg))

But this line of code keeps
that information hidden
inside of our head!

We need to define what
the TreeWidget needs that
our adapter provides!

-
<«

Design Patterns

Elements of Reusable
Object-Oriented Software

An interface
1S how we
o specify a set
==l of behaviors

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

SIS TINILAAW O TN OSSN AT TS A NOSIO Y

-
*}«#} asss) AN interface
v is how we

((specify a set
=~ " of behaviors

y

Java

For the moment, forget
Zope-the-web-framework

Instead, look at Zope the
component framework:

zope.interface
Zope.component

With three simple steps,
Zope will rid your code of
manual adaptation

Define an interface
Register our adapter
Request adaptation

from zope.interface import Interface

class ITree(Interface):

def name():
"N Return this tree node's name."" "

def children():
"N Return this node's children."" "

def len ():

""'Return how many children."""

from zope.component import provideAdapter

provideAdapter (MessageTreeAdapter,
adapts=Message,
provides=ITree)

from your_interfaces import ITree
class TreeWidget(...):
def __init__(self, arg):
tree = ITree(arg)

from your_interfaces import ITree
class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

1

i = int(32.1)
1 = 1list('abc')
float (1024)

Hh
Il

And that's it!

And that's it!

Define an interface
Register our adapter
Request adaptation

wINo harm to base class
wCan test with mock-up
wDon't need factories
wINo collision worries
wZope framework is cool
Registered adapter: A

3 party
Producers

IMAP

Genealogy

DB

email

Adapters

A

B

C

Your application

objects

-

msg

A(famtree)

-

B(msg)

I C(msg)

C(msg)

-

objects

3 party

Consumers

Web

Widget

GUI

What
What A B C consumers
adapters need
provide

y

IMAP A(famtree) Web

msg

C(msg)

i
Genealo y i
& » B(msg) » Widget

I GUI
email C(msg)

IMAP

Genealogy

Web

DB

email

Widget

GUI

To conclude:

3 practical tips
3 closing statements

Practical tip #1:
you can provide a default
argument for adaptation

from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

L]

Q: What if Zope doesn't know how to
adapt the object?

from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

L]

Q: What if Zope doesn't know how to
adapt the object?
A: It throws an exception!

What if that annoys you?

What if some objects
“just work” natively?

Right way out
and an
Easy way out

Right way:
Mark up other classes that
already provide interface

from zope.interface import alsoProvides
alsoProvides(GenealogyTree, ITree)
alsoProvides(FileSystemTree, ITree)

from your_interfaces import ITree
class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

1

i = int(3)
f = float(3.1415)

Fast way:
Provide a default for
when there is no adapter

from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg, arg)

from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg, arg)

item = mydict.get (32, None)

attr

getattr(obj, 'name', '')

Practical tip #2:
your adapter can
announce what it adapts

class MessageTreeAdapter(object):
def __init__(self, message):

from zope.component import provideAdapter

provideAdapter (MessageTreeAdapter,
adapts=Message,
provides=ITree)

class MessageTreeAdapter(object):
adapts(Message)
implements(ITree)
def __init__(self, message):

from zope.component import provideAdapter
provideAdapter (MessageTreeAdapter)

Practical tip #3:
There are actually three
ways to register

class MessageTreeAdapter(object):
adapts(Message)
implements(ITree)
def __init__(self, message):

from zope.component import provideAdapter
provideAdapter (MessageTreeAdapter)

<configure
xmlns="http://namespaces.zope.org/zope"
i18n_domain=" zope"
>
<adapter factory="MessageTreeAdapter"
for="Message"
provides="1ITree"
/>

</configure>

http://namespaces.zope.org/zope

class MessageTreeAdapter(grok.Adapter):
adapts(Message)
provides(ITree)
def __init__(self, message):

Closing Statement #1:

Grok is cool

Grok lets you define View
adapters that prep your
objects for the Web

BDB
IMAP

SQLAlchemy

Storm
Z0DB

Template

Template

Template

Y

View

Y

View

Y

—)

View

—)

XMLRPC View

XMLRPC

Web
Browser

Client

Grok lets you create space
suits so your objects can
survive the web

Closing Statement #2:

Dynamic adaptation
might feel like a type
declaration, but it's not!

from your_interfaces import ITree

class TreeWidget(...):
def __init__(self, arg):

tree = ITree(arg)

L]

Isn't this an evil old-fashioned
type declaration, like in C7

A: No, it's not!

It specifies a behavior;
not a type; it's dynamic;
it's optional.

Think of adapters as
“two-storey”’ attributes
and methods!

In the old days attributes
were just names:

def gather_info(arg):
title = arg.title
content = arg.content
encoding = arg.encoding

Now we ask for an
adapter.attribute:

def gather_info(arg):
author = IAnnotations(arg) .author
content = ITextContent(arg).content
encoding = IEncoded(arg) .encoding

Closing Statement #3:

This is the future!

Sprint with me!

Grok for the masses!

http://rhodesmill.org/brandon/adapters

http://rhodesmill.org/brandon/adapters

http://rhodesmill.org/brandon/adapters

Thank you!

http://rhodesmill.org/brandon/adapters

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150

